Type: \(\displaystyle 5A^{1}_1\) (Dynkin type computed to be: \(\displaystyle 5A^{1}_1\))
Simple basis: 5 vectors: (1, 2, 2, 2, 1, 1), (1, 0, 0, 0, 0, 0), (0, 0, 1, 2, 1, 1), (0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 1, 0)
Simple basis epsilon form:
Simple basis epsilon form with respect to k:
Number of outer autos with trivial action on orthogonal complement and extending to autos of ambient algebra: 0
Number of outer autos with trivial action on orthogonal complement: 0.
C(k_{ss})_{ss}: A^{1}_1
simple basis centralizer: 1 vectors: (0, 0, 0, 0, 0, 1)
Number of k-submodules of g: 13
Module decomposition, fundamental coords over k: \(\displaystyle V_{\omega_{1}+\omega_{2}+\omega_{3}+\omega_{4}}+2V_{\omega_{3}+\omega_{4}+\omega_{5}}+2V_{\omega_{1}+\omega_{2}+\omega_{5}}+V_{2\omega_{5}}+V_{2\omega_{4}}+V_{2\omega_{3}}+V_{2\omega_{2}}+V_{2\omega_{1}}+3V_{0}\)
g/k k-submodules
idsizeb\cap k-lowest weightb\cap k-highest weightModule basisWeights epsilon coords
Module 11(0, 0, 0, 0, 0, -1)(0, 0, 0, 0, 0, -1)g_{-6}-\varepsilon_{5}-\varepsilon_{6}
Module 23(-1, 0, 0, 0, 0, 0)(1, 0, 0, 0, 0, 0)g_{1}
h_{1}
g_{-1}
\varepsilon_{1}-\varepsilon_{2}
0
-\varepsilon_{1}+\varepsilon_{2}
Module 33(0, 0, -1, 0, 0, 0)(0, 0, 1, 0, 0, 0)g_{3}
h_{3}
g_{-3}
\varepsilon_{3}-\varepsilon_{4}
0
-\varepsilon_{3}+\varepsilon_{4}
Module 43(0, 0, 0, 0, -1, 0)(0, 0, 0, 0, 1, 0)g_{5}
h_{5}
g_{-5}
\varepsilon_{5}-\varepsilon_{6}
0
-\varepsilon_{5}+\varepsilon_{6}
Module 51(0, 0, 0, 0, 0, 1)(0, 0, 0, 0, 0, 1)g_{6}\varepsilon_{5}+\varepsilon_{6}
Module 68(0, 0, -1, -1, -1, -1)(0, 0, 1, 1, 1, 0)g_{14}
g_{-11}
g_{10}
g_{9}
g_{-15}
g_{-16}
g_{4}
g_{-20}
\varepsilon_{3}-\varepsilon_{6}
-\varepsilon_{4}-\varepsilon_{6}
\varepsilon_{4}-\varepsilon_{6}
\varepsilon_{3}-\varepsilon_{5}
-\varepsilon_{3}-\varepsilon_{6}
-\varepsilon_{4}-\varepsilon_{5}
\varepsilon_{4}-\varepsilon_{5}
-\varepsilon_{3}-\varepsilon_{5}
Module 78(0, 0, -1, -1, -1, 0)(0, 0, 1, 1, 1, 1)g_{20}
g_{-4}
g_{16}
g_{15}
g_{-9}
g_{-10}
g_{11}
g_{-14}
\varepsilon_{3}+\varepsilon_{5}
-\varepsilon_{4}+\varepsilon_{5}
\varepsilon_{4}+\varepsilon_{5}
\varepsilon_{3}+\varepsilon_{6}
-\varepsilon_{3}+\varepsilon_{5}
-\varepsilon_{4}+\varepsilon_{6}
\varepsilon_{4}+\varepsilon_{6}
-\varepsilon_{3}+\varepsilon_{6}
Module 88(-1, -1, -1, -1, -1, -1)(1, 1, 1, 1, 1, 0)g_{21}
g_{-19}
g_{18}
g_{17}
g_{-22}
g_{-23}
g_{13}
g_{-25}
\varepsilon_{1}-\varepsilon_{6}
-\varepsilon_{2}-\varepsilon_{6}
\varepsilon_{2}-\varepsilon_{6}
\varepsilon_{1}-\varepsilon_{5}
-\varepsilon_{1}-\varepsilon_{6}
-\varepsilon_{2}-\varepsilon_{5}
\varepsilon_{2}-\varepsilon_{5}
-\varepsilon_{1}-\varepsilon_{5}
Module 93(0, 0, -1, -2, -1, -1)(0, 0, 1, 2, 1, 1)g_{24}
h_{6}+h_{5}+2h_{4}+h_{3}
g_{-24}
\varepsilon_{3}+\varepsilon_{4}
0
-\varepsilon_{3}-\varepsilon_{4}
Module 108(-1, -1, -1, -1, -1, 0)(1, 1, 1, 1, 1, 1)g_{25}
g_{-13}
g_{23}
g_{22}
g_{-17}
g_{-18}
g_{19}
g_{-21}
\varepsilon_{1}+\varepsilon_{5}
-\varepsilon_{2}+\varepsilon_{5}
\varepsilon_{2}+\varepsilon_{5}
\varepsilon_{1}+\varepsilon_{6}
-\varepsilon_{1}+\varepsilon_{5}
-\varepsilon_{2}+\varepsilon_{6}
\varepsilon_{2}+\varepsilon_{6}
-\varepsilon_{1}+\varepsilon_{6}
Module 1116(-1, -1, -2, -2, -1, -1)(1, 1, 2, 2, 1, 1)g_{29}
g_{-2}
g_{28}
g_{12}
g_{27}
g_{-7}
g_{-26}
g_{8}
g_{-8}
g_{26}
g_{7}
g_{-27}
g_{-12}
g_{-28}
g_{2}
g_{-29}
\varepsilon_{1}+\varepsilon_{3}
-\varepsilon_{2}+\varepsilon_{3}
\varepsilon_{2}+\varepsilon_{3}
\varepsilon_{1}-\varepsilon_{4}
\varepsilon_{1}+\varepsilon_{4}
-\varepsilon_{1}+\varepsilon_{3}
-\varepsilon_{2}-\varepsilon_{4}
\varepsilon_{2}-\varepsilon_{4}
-\varepsilon_{2}+\varepsilon_{4}
\varepsilon_{2}+\varepsilon_{4}
\varepsilon_{1}-\varepsilon_{3}
-\varepsilon_{1}-\varepsilon_{4}
-\varepsilon_{1}+\varepsilon_{4}
-\varepsilon_{2}-\varepsilon_{3}
\varepsilon_{2}-\varepsilon_{3}
-\varepsilon_{1}-\varepsilon_{3}
Module 123(-1, -2, -2, -2, -1, -1)(1, 2, 2, 2, 1, 1)g_{30}
h_{6}+h_{5}+2h_{4}+2h_{3}+2h_{2}+h_{1}
g_{-30}
\varepsilon_{1}+\varepsilon_{2}
0
-\varepsilon_{1}-\varepsilon_{2}
Module 131(0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0)h_{6}0

Information about the subalgebra generation algorithm.
Heirs rejected due to having symmetric Cartan type outside of list dictated by parabolic heirs: 10
Heirs rejected due to not being maximally dominant: 1
Heirs rejected due to not being maximal with respect to small Dynkin diagram automorphism that extends to ambient automorphism: 1
Heirs rejected due to having ambient Lie algebra decomposition iso to an already found subalgebra: 0
Parabolically induced by 4A^{1}_1
Potential Dynkin type extensions: 6A^{1}_1,